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Introduction
Understanding the obesity-related genes may provide 

future therapeutic strategies to modulate disease progression. 
UCP2 separates oxidative phosphorylation (OXPHOS) from 
ATP production in the inner mitochondria. Figure 1 shows 
the differences among UCP1, 2, 3. The main role of UCP2 is 
controlling the metabolism of energy in the cells [1-3]. Besides 

that, the expression of UCP2 is associated with chronic 
inϐlammation due to reactive oxygen species (ROS). In this 
regard, in injured cells and tissues, ROS could be decreased 
by reducing the proton motor force by the anti-inϐlammatory 
effect of UCP2 [4].

Different pieces of evidence show a bilateral association 
between obesity and inϐlammation [5-10]. As obesity 
is a chronic inϐlammatory condition it is modulated by 
inϐlammatory-related biomarkers, microRNAs, hormones, 

Abstract

Obesity is rising worldwide, and the infl ammatory disease increased in parallel. Many studies 
demonstrate excess fat mass is an indicator of obesity. As much as lipid increased in the cell, 
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Figure 1: The diff erences among UCP1, 2, 3.
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and cytokines [11-13]. In this regard, ROS, as a marker of 
inϐlammation, could trigger lipid production and enhanced 
adiposity. On the other hand, obesity increased inϐlammation 
in different ways, for example, overfeeding produces more 
ROS; increases oxidative stress-related adipokines; and 
decreases anti-oxidant potentials that lead to the development 
of obesity-related complications like some cancers [14-17]. 

As UCP2 contributes to metabolic functions it could be 
associated with indicators of energy metabolism, adiposity, 
body weight, BMI, body composition, fat mass, and lean 
body mass [18,19]. Therefore, as cell metabolism-related to 
oxidative stress and the inϐlammatory status of cells, and by 
considering the modulatory role of UCP2 in inϐlammation; it 
seems UCP2 is a master protein in the connection between 
obesity and inϐlammation [20]. Figure 2 demonstrate the 
relationship between these three elements: UCP2, energy 
metabolism, and oxidative stress. So UCP2 might have a 
substantial role in the onset, progress, or treatment of obesity. 
This study aims to review the studies about the association 
between UCP2 and obesity focusing on the inϐlammatory 
process linked to ROS.

UCP2

Recent studies show that UCPs are found in eukaryotes 
such as plants, ϐishes, and mammals. UCPs are proteins that 
separate OXPHOS from ATP synthesis. In mitochondria, the 
electron transport chain (ETC) is in charge of ATP production 
via an electrochemical gradient across the IMM. UCPs bypass 
this gradient by induced proton leak, so they waste energy as 
heat and reduced ATP yield and prevent the storage of energy 
as fat mass [21,22]. The UCP1 was discovered in the brown 
adipose tissue (BAT), UCP2 is expressed in many tissues and 
UCP3 is expressed in the skeletal muscle [23-25]. Additionally, 
UCP2 and UCP3 show near 60% sequence similarity with UCP1 
and near 70% similarity with each other. This similar identity 
probably makes a similarity in their biochemical functions.

The main physiological function of UCPs is controlling the 
body’s metabolism and modulate the ROS [23,26,27]. UCP1 
in rodents is the main regulator of diet- and cold-induced 
thermogenesis. So it could control the energy expenditure and 
the energy balance in the body [28-30]. Nonetheless, adult 
humans only have little amounts of BAT, so the physiological 
signiϐicance of UCP1 for them has been debatable [31,32]. 
Although, some studies showed UCP2 has not rolled in 
adaptive thermogenesis or regulation of body metabolism 
[33,34].

Generally, UCP2 is expressed in the spleen, lung, intestine, 
skin, brain, ϐibroblasts, immune cells, kidney, pancreatic islets, 
skeletal muscle, heart, and adipose tissue [26,35-37]. Under 
the basal condition, the turnover rate of UCP2 is around 3 days 
that is parallel to UCP1 and in different situations, in response 
to changes in nutrient supply, the turnover rate of UCP2 was 
different. Besides it was showed that the half-life of UCP2 is 
short and it was about less than 1 hour [35], so it controls 
energy needs in the short term.

Nonetheless, the properties of UCP2 differ between 
populations. One explanation for this difference is the 
existence of genetic variants that make various UCP2 
characteristics and multiple levels of function. For example, 
in human studies, it was shown that polymorphism of the 
UCP2 makes different phenotypes. In -866G/A polymorphism 
for the promoter of UCP2, the G allele is associated with a 
lower expression of UCP2 when compared to the A allele 
[38] and this polymorphism modulates the development of 
diabetes [39]. In another study of Egyptian children and their 
mothers, GG genotype after AG was the most frequent and the 
G allele was the most present in mothers who affected with 
obesity and male children who also have obesity, (statistical 
signiϐicance was not observed) [37].

Regulation of UCP2 in the cells

UCP2 is regulated at multiple levels including transcription, 
translation, protein activity, and turnover, and activity. These 
regulations take place by the effect of hormones, cytokines, 
and neurotransmitters. Especially, the transcription of 
the UCP2 is regulated by factors such as fatty acids and 
amino acids, glucose, and glutamine [40]. In this regard, 
polyunsaturated fatty acids have a deϐinite role [41]. Fatty 
acids enhance UCP2 gene expression through peroxisomal 
proliferator-activated receptors (PPARs) [42]. Similarly, the 
agonist of PPAR-γ increased UCP2 expression in adipocytes 
[43]. Additionally, nuclear receptors such as sterol regulatory 
element-binding protein (SREBP), retinoid X receptor (RXR), 
and thyroid hormone response elements (TRE); contribute to 
UCP2 expression. For example, PPAR-γ in complex with RXR, 
by binding to the intron 1 of the UCP3 gene, which is located 
near UCP2, simpliϐies the translational activation of UCP2 
[44]. In another example, PPAR-γ coactivator1-a (PGC1a) has 
increased UCP2 gene expression in animal models of type II 
diabetes in the pancreatic beta-cell [45-47]. 

Despite in translation level, the mRNA of UCP2 is 
constantly suppressed. In cells such as macrophages, the 
level of UCP2 protein was altered despite unchanged mRNA 
expression that suggests post-transcriptional regulation [48]. 
So once UCP2 is translated, its activity can also be regulated. 
It was found polyunsaturated fatty acids, can increase the 
activity of UCP2. Other substrates might be regulated UCP2 
activity, even ROS-derived lipid peroxidation products such as 
4-hydroxynonenal, has been found to increase the activity of 
UCP2 in IMM and promote proton leak [3]. Although generally, 
the regulation mechanism of UCP2 activity by ROS is not clear. Figure 2: Relations between oxidative stress, UCP2, and metabolism of energy.
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However, in a normal redox state, ROS levels are maintained 
at tolerable levels in mitochondria, so UCP2 is conjugated 
with glutathione (GSH) which is an inactive form. When small 
increases in ROS levels occur, UCP2 is deglutathionylated, 
resulting in an increased proton leak [49].

Regulation of UCP2 occurs in different ways depending 
on different tissues and health or disease status. This level 
of regulation depends on the kind of tissue (adipose tissue, 
skeletal muscles, and brain neurons), as the most important 
issue here is the adipose tissue. Adiponectin, an adipocyte-
derived cytokine, can increase UCP2 expression that relates 
UCP2 with adiposity. Irisin, an ischemic skeletal muscle-
derived cytokine, up-regulates UCP2 expression in the lung 
[50]. In the CNS, ROS production in proopiomelanocortin 
(POMC) and neuropeptide Y (NPY)/agouti-related peptide 
(AgRP) regulates UCP2 expression [51,52], these regulators 
suggest the probability of the incorporation of UCP2 in 
appetite control that effects behavioral eating, cachexia, and 
obesity.

The difference between the expression of UCP2 in tissues 
such as the heart and skeletal muscle also suggests a potential 
regulatory role of microRNA. Some miRNAs repress or 
enhance UCP2 gene expression. MicroRNA-133a [53] and 15a 
[54] enhance UCP2 gene expression and it down-regulated 
by miR-24 and miR-34a, [55]. These regulations were very 
complicated. A muscle-speciϐic miRNA, miR-133a recognizes 
the 3′-UTR of mouse UCP2 mRNA and binds to upstream of 
miR-133a and suppressed UCP2, through the synthesis of 
muscles [56,57]. This increased myogenesis so that might be 
decreased adiposity.

Multiple mechanisms can control the level of activity of 
UCP2, including a variety of metabolites. It was not extended 
studied exist, but few food items were showed affected 
body metabolism that might be through UCP2. For example, 
Kim, et al. showed green satsuma mandarin orange extract 
(GME) induced UCP2 expression in skeletal muscle. Besides, 
Muhammad, et al. demonstrated that in participants with 
AA + GA genotypes of UCP2, more coffee intake decreased the 
weight, BMI, and fat mass, but in GG genotype there was no 
association with body composition observed [58].

The act of UCP2 in related cells

The precise function of UCP2 in cells remains unknown, 
although UCP2 is involved in a variety of physiological and 
pathological procedures. Many studies showed UCP2 acts in 
the center of cell metabolism [59-62]. As before noted UCP2 
has three main roles in the body. Two of them are related 
to energy metabolism and thermogenesis. The third role 
corresponds to oxidative stress and inϐlammation. 

UCP2 and energy metabolism

The well-known act of UCP2 is controlling body metabolism 
by modulates ATP production and proton leak in IMM, so it 

wastes energy in the form of heat and regulates cold- and diet-
induced thermogenesis [63-66].

UCP2 in CNS energy homeostasis

In the central nervous system (CNS) UCP2 regulates 
homeostatic mechanisms. As the second function, UCP2 
affects food intake, appetite, energy consumption, nutrients 
homeostasis, reward behaviors, secretion of metabolism-
related hormones; and negative regulation of glucose 
sensing systems. Central UCP2 affects these processes by the 
mechanisms that are related to the histone deacetylation, 
synaptic, and mitochondrial processes [4,67-69]. Besides 
these impacts, UCP2 is highly expressed in the hypothalamus, 
speciϐically in the arcuate and ventromedial nuclei [51], which 
contains POMC and NPY/AgRP, the called anorexigenic and 
orexigenic neurons [51,70-72], by this process, UCP2 could 
be linked with appetite. Until now no study evaluates this 
relationship.

UCP2 in the peripheral energy homeostasis

UCP2 controls nutrient homeostasis through hormonal 
regulations. In beta cells of the pancreases, UCP2 is involved in 
glucose-stimulated insulin secretion (GSIS). Increased levels 
of glucose enhanced ATP/ADP ratio in the mitochondria. The 
increased ATP inhibits ATP-sensitive potassium channels, 
caused increased plasma membrane depolarization, and 
enhanced insulin secretion [73]. Through this process ucp2 
expression is enhanced. In addition to insulin, UCP2 has 
also been reported to regulate glucagon secretion from 
pancreatic alpha cells. The absence of UCP2 in alpha cells 
by enhanced mitochondrial coupling makes more ROS in 
the cells that suppress glucagon secretion. Considering the 
main role of these two hormones in energy homeostasis and 
by considering the importance of UCP2 in their secretion, it 
represents a sensor in the regulation of hyperglycemia [74]. 
Another metabolic hormone related to UCP2 is ghrelin. It has 
been hypothesized that fasting enhanced ghrelin secretion 
that induced UCP2 activation. This effect is mediated by 
increased oxidation of fatty acids that elevate the ROS levels 
[75]. Prevention of ROS production in POMC neurons during 
diet-induced obesity, activate UCP2 that impairs the activity 
of these neurons during hyperglycemia, so leptin resistance 
occurred, in which elevated levels of leptin do not reduce in 
feeding or increase energy expenditure [76]. These hormones 
have afϐirmed the association of UCP2 with metabolism-
related diseases like obesity and diabetes.

UCP2 in adipose tissue

Although lean body mass is an important organ for the use 
of energy and protection against fat storage, the expression 
and function of UCP2 in lean body mass have remained 
unclear, but many studies show the association of fat mass (in 
the form of adipose tissue) and UCP2 expression. According to 
these studies, human adipose tissue is divided into brown and 



The review of the relationship between UCP2 and obesity: Focusing on infl ammatory-obesity

https://www.heighpubs.org/hodms 004https://doi.org/10.29328/journal.niogb.1001015

white adipose tissue. The brown adipose tissue is responsible 
for the thermogenesis in the body, and white adipose tissue is 
responsible for fat storage. White adipose tissue with different 
types of cells such as ϐibroblasts, pre-adipocytes, mature 
adipocytes, and macrophages [72,77-79]. Furthermore, 
visceral fat mass has been considered an energy storage 
location and an endocrine organ to release adipocytokines 
[80]. Some of these adipokines like adiponectin unregulated 
UCP2 expression. 

White adipose tissue release leptin that acts on the 
hypothalamic regions of the brain which maintains body 
metabolism, regulates energy homeostasis, decreasing energy 
intake, and increasing energy expenditure circulates at levels 
proportional to the amount of adipose tissue, signaling long-
term energy storage [81,82]. The study of Scarpace, et al. 
indicates that leptin increases the gene expression of UCP2 
[83]. Ho, et al. showed leptin may preserve neuronal survival 
via UCP2 by keeping the ATP levels and the membrane 
potential of mitochondria, but leptin had no effect in the 
adjustment of ROS levels [84]. Unless in the US Caucasians 
affected with obesity, leptin having an effect on fat mass at 
effect sizes of 5% or greater, and UCP2/UCP3 have the effect 
size of 10% or greater, they unlikely to have a substantial 
effect on variation in obesity phenotypes [85]. 

Decreased adiponectin from adipocytes plays an 
important role in obesity-related diseases [86,87] due to 
insulin-sensitizing, anti-inϐlammatory effects, and decreases 
body weight [88]. Zhou, et al. suggest adiponectin stimulates 
Mitochondrial superoxide production that promotes UCP2 
expressions in mice liver [89]. It was showed in women with 
obesity UCP2 protein has a signiϐicant relationship with
plasma adiponectin [90]. In addition, Mahadik, et al. 
demonstrate as for UCP2 gene expression was signiϐicantly 
reduced in patients with obesity, a relationship between 
adiponectin and UCP2 expression may provide us with an 
innovative therapeutic strategy to prevent obesity-related 
diseases [91]. These studies provide growing evidence that 
shows the critical role of adipocyte released-cytokines in UCP2
 expression and vice versa.

Studies showed UCP2 through thermogenesis increased 
utilization of energy in the body, so decreased energy storage 
as fat accumulation [92]. On the other view, Vozza, et al. 
showed UCP2 transport malate, oxaloacetate, and aspartate 
[93], which suggest an additional role for UCP2 in nutrient 
metabolism, especially fatty acids [94]. In addition to proton 
leak and waste of energy, UCP2 controls lipid metabolism. 
Cholesterol side-chain cleavage enzyme (CYP11A1) is related 
to UCP-2 expression, which demonstrated the contributing 
role of UCP-2 in lipid metabolism [25]. Moreover, UCP2 has 
a role in mitochondrial utilization of fatty acids and pyruvate 
[95], so it could modulate the intracellular usage of nutrients. 
On the other hand, UCP2 prevents the overproduction of ATP 
[96].

The relation of UCP2 with obesity and its comorbidities

Because UCP2 is located in the center of energy metabolism, 
it plays an important part in the onset, diagnosis, and 
treatment of obesity. In the onset phase, UCP2 through heat 
generation regulates thermogenesis and energy consumption 
which prevents adipose tissue accumulation [62]. Figure 3 
demonstrate the mechanisms for decreased obesity by UCP2.

UCP2 could be used as a diagnostic tool for obesity [97]. 
Some diseases such as obesity and its comorbidities (PCOS, 
diabetes, etc.) display a probable association between UCP2 
and the grade of disease [98]. For example, the expression 
of UCP2 in tumor cells determines the features of the tumor 
microenvironment and is positively associated with prolonged 
survival. These results could be inϐluenced by different 
phenotypes [97,99]. In PCOS patients the correlation between 
UCP2 and CYP11A1 in lipid metabolism could be used as a 
diagnostic tool for obesity [25]. As WHO demonstrated UCP2 
is an applicable tool for evaluating obesity grade but, studies in 
humans have produced only weak evidence for the association 
of variants of UCP2 with BMI because genetic variations could 
change the results [100]. In Japan, Mutombo, et al. found UCP2 
D/I associated with weight by altering the effect of energy 
expenditure on BMI [101], but in the Chinese population, no 
association was demonstrated between UCP2-45 bp I/D and 
BMI variation [102]. Although a higher UCP2 expression could 
have a negative relationship with the stage of obesity, there 
was controversy here; Cortes-Oliveira C, et al. showed UCP2 
expression contributed to weight loss after hypocaloric diet 
intervention in animals [103]; and in the study of Pishva, et al. 
increased UCP2 related with decreased the REE level in women 
affected by obesity [94], and as showed many years ago, more 
decreased in energy expenditure (as REE) should be related 
with more fat storage and overweight; so, in women affected 
with obesity enhanced UCP2 related with enhanced obesity. 
As oxidative stress indicators act like obesity indicators, UCP2 
could be a diagnosis tool for obesity, but further studies need 
to determine the exact amount of UCP2 expression in different 
tissues related to the grade of obesity as a biomarker.

For the treatment of obesity, control of UCP2 might be 
useful. In patients with obese cell’s energy metabolism changes 
from consumption of fat to the storage of fat. Because UCP2 
prevents this mechanism and reverse this phenomenon, it may 
offer a practical anti-obesity strategy. With this aim, in some 
studies, treatment of disease with control metabolism-related 

Figure 3: The mechanisms by which UCP2 decreased obesity.
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genes was investigated and it was suggested that UCP2 could 
be a molecular target for curing obesity and its complications 
[104]. Additionally, unless the mechanism is unknown, the 
ability of UCP2 to reduce oxidative stress turns it into an 
attractive therapeutic target in obesity and its comorbidities, 
in which ROS has a key role in their pathogenesis. More trials 
should be done for the ϐinal conclusion.

Mutual association of UCP2 and oxidative stress

Oxidative stress is a normal phenomenon in the body. 
Under normal conditions, the levels of ROS in the cells 
are maintained at low levels. Besides, oxidative stress is a 
disequilibrium between the pro-oxidants and antioxidants 
in the body. ROS and nitrogen species could be biomarkers 
for oxidative damage. Every single cell in the body tends to 
establish stable conditions between oxidative and antioxidant 
species. The continuous formation of ROS and other free 
radicals is important for normal physiological functions such 
as catabolic and anabolic processes. However, endogenous 
biologic factors or exogenous environmental factors, such as 
radiation excess the produce of free radicals. Mitochondria 
is the most important location of contentious cellular 
ROS production due to the electron transport chain in the 
mitochondrial membrane. ROS has several physiological roles 
such as cell signaling, therefore causing the imbalance that 
leads to cell and tissue damage [105-107].

The third role of UCP2 that was recently more noticed is 
modifying oxidative stress in cells [26]. It was shown that 
the B-oxidation of fatty acids produced a greater number 
of electrons and increases ETC activity more than other 
substrates, so it promotes more ROS. Superoxide, a lipid 
peroxidation product and a frequent ROS in the cell could 
activate UCP2, facilitated proton leak in IMM, controlled 
proton re-entry into the mitochondrial matrix thus reduced 
the ROS re-production [96]. Besides proton transfer, UCP2 
allows the passage of C4 metabolites that substrates the Krebs 
cycle and therefore decreases the activity of ETC, ATP yield, 
and ROS production [93].

As many studies showed, UCP2 controls body oxidative 
stress in a feedback manner and there is a bilateral 
relationship between UCP2 and ROS. For example, in 
macrophages overexpression of UCP2 decreased intracellular 
ROS levels and reduced immune activity [108-110], and also, 
in immune cells, overproduction of ROS increased expression 
of UCP2 [111,112]. Because of UCP2 relationship with ROS as 
an indicator of oxidative stress, Echtay, et al. suggested UCP2 
could be acted as a sensor of oxidative stress and it is the 
critical protein for modulates ROS within the cell [3].

Obesity

Overweight and obesity present the most challenging 
chronic disease to prevention around the world. The American
Medical Association demonstrates obesity as a disorder 

and considers it one of the main public health issues 
[113]. Overweight and obesity are deϐined as increased fat 
accumulation that may disturb health and it is more fatal than 
underweight. In 2016, 39% of adults were overweight and 
13% were people with obesity [113]. Obesity is the main risk 
factor for metabolism-related diseases such as cardiovascular 
diseases, diabetes, osteoarthritis, and colon cancers [113].

Obesity is a multi-caused disease that has complex 
pathogenesis, with environmental, genetic, and epigenetic 
factors [114]. Obesity that generated by the gradual 
accumulation or dysfunction of adipose tissue, the abnormal 
or excessive fat, that may interfere with the maintenance of 
an optimal state of health [115]. This tissue is considered an 
endocrine organ with high lipid storage capacity for systemic 
management of energy substrates. Evidence showed excessive 
fat accumulation in individuals with obesity, induced to a 
pathological increment of FFA levels in serum which impairs 
the metabolism of energy substrates such as fat and glucose, 
adipose tissue, and promotes higher mitochondrial and 
peroxisomal oxidation witch causes synthesis of free radicals, 
oxidative stress, depletion of ATP, and lipotoxicity [116].

Obesity and infl ammation

Inϐlammation is a series of events that occur to preserve 
tissue and organ stability. Releasing the mediators and 
expressing the receptors at the appropriate time is necessary 
to regenerate and main the tissue. Additionally, inϐlammation 
is a protective function of tissue for the response to destruction 
[117], so it may rebuild tissue. Obesity is associated with a 
chronic low-grade inϐlammation in which pro-inϐlammatory 
cytokines increased. Although the triggers were not clear. A 
possible hypothesis is that in adipocytes the over-expression 
of genes induces intracellular stress, resulting in the activation 
of inϐlammatory cascades, is accrued [118]. Moreover, the 
sensitivity of oxidative biomarkers is higher in individuals 
who have been affected by obesity and associated directly with 
BMI, percentage of body fat, LDL oxidation, and triglyceride 
levels [119]. Furthermore, in addition to the increase of 
adipose tissue, the activity of antioxidants such as superoxide 
dismutase, catalase, and glutathione peroxidase, signiϐicantly 
diminished, which could increase levels of ROS [36].

There is a two-sided association between ROS and adiposity. 
In two animal studies to explore the role of ROS in obesity, 
it was found that excessive fat accumulation was associated 
with increased ROS, and also it was demonstrated that more 
ROS production can cause more fat accumulation and change 
in the fatty acids composition [120, 121]. On other words, 
increased ROS contributes to the development of adiposity by 
enhanced production of obesity-related cytokines.

Excessive lipid storage produces stress in adipocytes 
with the ability to release pro-inϐlammatory products. In 
the other hand, in pathological situations, adipose tissue, 
adipocytes, and pre-adipocytes secret bioactive molecules 
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called adipokines, including cytokines (TNF-α, IL-1, and IL-6),
hormones (leptin and adiponectin), and ROS [111]. In the 
positive feedback, these cytokines are potential triggers 
for the production of ROS and nitrogen by macrophages 
and monocytes; therefore, a rise in the number of cytokines 
could be responsible for increased inϐlammation. Adipose 
tissue’s innate immune system affected inϐlammation due 
to increased pro-inϐlammation, trigger the acute phase 
response, and promote oxidative stress. So, a study suggested 
that inϐlammation in adipose tissue of patients with obesity 
plays a critical role in the pathogenesis of obesity-related 
comorbidities [122]. Besides these ϐindings, obesity alters 
genome constancy. Oxidative stress usually occurred 
in adipocytes that could damage DNA and inhibit its repair. On 
the other hand, the accumulation of damaged DNA can cause 
enhanced mutation and change the gene expression that make 
disturbances in cell metabolism, proliferation and migration, 
and resistance to apoptosis [123]. All of these related the 
obesity and inϐlammation through DNA.

Furthermore, visceral adiposity is associated with the more 
prevalence of metabolic disorders such as diabetes mellitus 
(DM), hypertension, cardiovascular disease, and other chronic 
diseases, all of which coincide with degrees of inϐlammation 

[124,125]. There is piece of of evidence suggesting obesity is 
a chronic low-grade inϐlammation disease, so oxidative stress, 
in particular, the imbalance of ROS may be the mechanistic 
link between obesity and its associated cardiovascular and 
metabolic complications [126].

Several things can cause chronic inϐlammation, such as 
infection, injury, an autoimmune disorder, long-term exposure 
to irritants. Although, some of them mistakenly attacking 
healthy tissue and are related to ROS production. One of the 
most important factors to consider in the adjustment of ROS 
production is UCP2. In recent years, there have been signiϐicant 
advancements in our understanding of how UCP2 contributes 
to the start and continue of inϐlammation [56,127,128]. 

The association of UCP2 and infl ammation in obesity

While intracellular ROS production takes place in many 
cells, mitochondrial production of ROS remains a part of 
inϐlammation in most cells [129]. There is evidence that UCP2 
has the main role in maintaining steady-state levels of ROS. For 
example, the skin is frequently exposed to various chemical, 
physical, and biological stresses, such as microbial infection, 
ultraviolet rays, and temperature changes, which enhanced 
the skin secretions, peroxidation of lipids, and degeneration 

Figure 4: The overall role of UCP2 in infl ammatory-obesity.
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Table 1: The role of UCP2 in infl ammatory disease.

Disease Results

The Pathologic Mechanism of low expression 
of UCP2

Ref. Year
Increased 
ROS 

Decreased 
thermogenesis

Decreased 
ATP 
production 

PCOS
The increase in expression of ovary UCP2 identifi ed when treated with T3. * (1) 2011
–866 G/A polymorphism of the UCP2 is not associated with the pathogenesis of PCOS. * (2) 2011

RA, SLE –866 G/A polymorphism of the UCP2 has a protective role in chronic infl ammatory diseases. * (3) 2009

MS

The increase in UCP2 expression correlated with an augmented number of 
CD3+ T-lymphocytes that regulate ROS in MS. * (4) 2017

No signifi cant diff erences were revealed in the frequencies of alleles at –866 G/A 
polymorphism of the UCP2 (Article in Russian). * (5) 2011

Results confi rm the link between UCP2 SNP and MS in a Spanish MS population. * (6) 2007
–866 G/A polymorphism of the UCP2 is associated with susceptibility to MS in the German 
population. * (7) 2005

Cancer

The overall survival probability of lung carcinoma patients with high mRNA expression 
levels of UCP2 and PRMT1 is strongly reduced. * (8) 2017

In lung cancer cell lines exposed to hypoxia or oxidative stress while Ucp2 showed the 
modest up-regulation in stress conditions. (9) 2017

Genotypes of UCP2 rs659366 were not associated with colorectal cancer risk but the 
interactions ofUCP2 rs659366 and red meat consumption may contribute to the risk of 
colorectal cancer.

* (10) 2013

UCP2 expression is increased in most human colon cancers, and the level of expression 
appears to correlate with the degree of neoplastic changes. * (11) 2004

MeS
The 45-bp I/D polymorphism of UCP2 was associated with decreased risk of MeS. * * (12) 2014
UCP2 gene expression was reduced in MeS patients compared with controls. * (13) 2012

DM UCP2 gene may be involved in the pathogenesis of Diabetic Retinopathy in Han Chinese 
Patients with Type 2 Diabetes. * (14) 2018

The UCP2 haplotype Ala55Val (rs660339) seems to be an important risk factor associated 
with proliferative diabetic retinopathy in both type 2 and 1 diabetic groups. * (15) 2010

NAFLD UCP2 show wide tissue distribution with a substantially increased presence in fatty liver. * (16) 2005

CVD
The G allele of UCP2 rs2735572 and T allele of UCP2 rs17132534 were associated with 
higher diastolic blood pressure that was associated with a higher CVD risk factors. These 
fi ndings suggest that UCP2 may have a role in the development of CVD.

* (17)  2020

–866 G/A polymorphism of the UCP2 occurred at highest frequency in CAD patients, but 
–866 G/A polymorphism of the UCP2 did not infl uence the risk of CAD in South African 
Indian.

(18) 2013

UCP2 SNPs were associated the total CVD, MI, and ischemic stroke risk. * (19) 2011

Obesity –866 G/A polymorphism of the UCP2 may play a crucial role in the pathogenesis of insulin 
secretion thus leads to the development of DM. * (20) 2019

The diff erences of UCP2 mRNA expression level between the obese individuals and the 
controls as well as between the DM patients and the controls did not reach statistical 
signifi cance.

* (21) 2017

An association between adiponectin and UCP2 gene expression may provide therapeutic 
strategy to prevent obesity. (13) 2012

–866 G/A polymorphism of the UCP2 in the Iranian population, Subjects with AA genotypes 
in all of the studied groups showed a lower BMI than subjects with the GG genotype. (22) 2010

A UCP2 gene exon 8 variant that may aff ect susceptibility to weight gain by infl uencing 
regulation of leptin. Also UCP2 raised body mass index. * (23) 1999

UCP2 polymorphism was shown to be associated with energy metabolism and obesity 
in humans. DNA sequencing of UCP2 revealed polymorphisms Ala→Val substitution in 
exon 4 and 45 bp insertion/deletion in the 3′-untranslated region of exon 8 of UCP2 that 
contributed to a variation in metabolic rate and overall body fat content.

(24) 1998

CAD: Coronary-Artery Disease, Cvd: Cardiovascular Disease, Dm: Diabetes Mellitus, Mes: Metabolic Syndrome, Ms: Multiple Sclerosis, Nafl d: Non-Alcoholic Fatty Liver 
Disease, Pcos: Polycystic Ovary Syndrome, Prmt1: Protein Arginine Methyltransferase 1, Ra: Rheumatoid Arthritis, Ros: Reactive Oxygen Species, Sle: Systemic Lupus 
Erythematosus, Ucp: Uncoupling Protein.

1.  Liu Y, Jiang H,zXing F-Q, Huang W-J, Mao L-H, He L-Y. Uncoupling protein 2 expression aff ects androgen synthesis in polycystic ovary syndrome. 
Endocrine. 2013;43(3):714-23.

2. Kim JH, Li L, Yun JH, Choi BC, Baek KH. Association study between the -866G/A polymorphism in the promoter of uncoupling protein-2 gene and polycystic 
ovary syndrome. Molecular medicine reports. 2011;4(4):747-51.

3. Yu X, Wieczorek S, Franke A, Yin H, Pierer M, Sina C, et al. Association of UCP2 -866 G/A polymorphism with chronic infl ammatory diseases. Genes 
Immun. 2009;10(6):601-5.

4. Smorodchenko A, Schneider S, Rupprecht A, Hilse K, Sasgary S, Zeitz U, et al. UCP2 up-regulation within the course of autoimmune encephalomyelitis 
correlates with T-lymphocyte activation. Biochimica et biophysica acta Molecular basis of disease. 2017;1863(4):1002-12.

5. Aitkhozhina N, Nigmatova V, Khanseitova A, Mendesh M, Ashirbekov E, Balmukhanov T. Polymorphic markers of some genes associated with multiple 
sclerosis in the population of Kazakhstan. Russian journal of genetics. 2011;47(6):749-53.

6. Otaegui D, Saenz A, Ruiz-Martinez J, Olaskoaga J, Lopez de Munain A. UCP2 and mitochondrial haplogroups as a multiple sclerosis risk factor. Multiple 
sclerosis (Houndmills, Basingstoke, England). 2007;13(4):454-8.

7. Vogler S, Goedde R, Miterski B, Gold R, Kroner A, Koczan D, et al. Association of a common polymorphism in the promoter of UCP2 with susceptibility to 
multiple sclerosis. Journal of molecular medicine (Berlin, Germany). 2005;83(10):806-11.
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of proteins with inϐlammatory process or immune 
response. It was shown, UCP2 in the skin may be involved 
in regulating the production of skin ROS by controlling via 
the b-adrenergic receptor and retinoid receptor[130,131]. 
Studies demonstrated UCP2 -866G allele is correlated with 
lower levels of UCP2 expression in the immune systems. The 
relation of UCP2 with the inϐlammatory disease was suggested 
in many studies. Many evidences highlight the role of UCP2 
in a broad range of normal and un-normal processes [132]. 
Studies suggest some chronic diseases have inϐlammatory 
nature and in the others after the onset of disease, oxidative 
stress increased and inϐlammatory status developed. Table 1
shows some of these diseases. Figure 4 demonstrates the 
overall role of UCP2 in inϐlammatory-obesity.

Conclusion
Understanding these mechanisms will be a key factor to 

explain the protective effects of UCP2 in therapies for various 
diseases. Because UCP2 synthesis is regulated by miRNAs, 
nutrients, cytokines, and hormones; and it was shown UCP2 
itself, has a regulatory effect with these factors of control in 
a feedback manner. Every change in these controlling factors 
at each level could change UCP2 and create or treat disease. 
Studies showed that energy and metabolism-related diseases 
such as obesity, associated with genetic status. As UCP2 has 
a role in metabolic functions, it is considered an important 
regulatory indicator of body metabolism, body weight, and 
body composition. As UCP2, has a role in oxidative stress by 
ROS modulation, it participates in the etiology or progression 
of inϐlammatory diseases such as obesity and its comorbidities. 

Although a higher UCP2 expression could have a 

negative relationship with the stage of obesity, ϐindings are 
controversial; as UCP2 expression contributed to weight 
loss in animals, decreased the REE in humans, related with 
leptin and adiponectin. Further studies are recommended 
to determine the mechanism of action. In conclusion, UCP2 
could be used as a diagnostic tool for inϐlammatory obesity. 
Additionally, without considering the mechanisms, the ability 
of UCP2, to reduce oxidative stress makes it an attractive 
therapeutic goal in obesity, in which ROS production plays a 
key role in pathogenesis and treatment. More studies should 
be done for the ϐinal conclusion.
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